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Abstract

A Frontal-Delaunay surface meshing algorithm for closed 2-manifolds embedded in R3 is presented. This new algorithm is an
extension of existing restricted Delaunay-refinement techniques, in which the point-placement scheme is modified to improve
element quality in the presence of mesh size constraints. Specifically, it is shown that the use of off-centre Steiner vertices,
positioned along facets in the associated Voronoi diagram, typically leads to an improvement in the shape- and size-quality of
the resulting surface tessellation. The new method can be viewed as a hybridisation of conventional Delaunay-refinement and
advancing-front techniques, in which new vertices are positioned to satisfy both element size and shape constraints. It is shown
that by restricting point-placement to faces of the associated Voronoi diagram, the new Frontal-Delaunay algorithm maintains many
of the theoretical guarantees commonly associated with conventional restricted Delaunay-refinement techniques. The performance
of the new Frontal-Delaunay scheme is investigated experimentally, via a series of comparative studies designed to contrast the
performance of the new algorithm with a typical Delaunay-refinement technique. It is shown that the new Frontal-Delaunay
algorithm inherits many of the benefits of both Delaunay-refinement and advancing-front type methods, typically leading to the
construction of very high quality triangulations in practice. Experiments are conducted using a range of complex benchmarks,
verifying the robustness and practical performance of the proposed scheme.
c© 2014 The Authors. Published by Elsevier Ltd.
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1. Introduction

Surface mesh generation is a core element of numerous computational modelling and simulation tasks, including
many forms of computational engineering and numerical modelling, a range of problems in computer graphics and
animation, and various data visualisation applications. Given a geometric domain described by a bounding surface Σ

embedded in R3, the surface triangulation problem consists of tessellating Σ into a mesh of non-overlapping triangular
elements, such that all geometric and user-defined constraints are satisfied. While each use-case contributes its own
set of specific considerations, it is typical to require that the surface tessellation: (i) consist of elements of high shape-
quality, (ii) provide a good geometric and topological approximation to the underlying surface Σ, and (iii) satisfy a set
of user-specified element size constraints. While various strategies have been developed to solve the surface meshing
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problem in the past, a new algorithm is developed in this study, designed to improve the quality of the resulting
triangulations.

1.1. Related Work

Mesh generation is a broad and evolving area of research. A number of algorithms have been developed to tackle
various meshing tasks, including grid-overlay methods [1,2] in which a mesh is generated by warping and refin-
ing a semi-structured background grid, advancing-front techniques [3,4,5,6] which grow a mesh incrementally in a
layer-wise fashion, and Delaunay-based strategies [7,8,9,10,11,12,13,14,15,16] which incrementally refine an initially
coarse Delaunay triangulation.

The Delaunay triangulation [17] is imbued with a number of attractive theoretical properties. In the context of
mesh generation, for triangulations in R2 and surface tessellations embedded in R3, it is known that such structures are
topologically optimal [18], maximising the worst-case element quality in the resulting mesh. The reader is referred
to [18] for additional details. As the name suggests, Delaunay-refinement schemes are based on the incremental
refinement of an initially coarse bounding tessellation. At each step of the algorithm, any elements that violate a set
of geometric or user-defined constraints are identified and the worst offending element is eliminated. This is achieved
through the insertion of an additional Steiner vertex at the refinement point of the element – either the circumcentre
of the element itself, or a point on an adjacent segment of the bounding geometry. The original planar Delaunay-
refinement methods of Chew [7] and Ruppert [8,9] have since been extended to support volumetric tessellations [11]
and surface triangulations [14,15,13].

Delaunay-based methods have previously been applied to the surface meshing problem, via the so-called restricted
Delaunay tessellation of Edelsbrunner and Shah [19]. Given a surface Σ embedded in R3 and a set of points X ∈ Σ,
the restricted Delaunay surface triangulation Del |Σ(X) is a sub-complex of the full-dimensional Delaunay tessellation
Del(X), containing the 2-faces f ∈ Del(X) that approximate the underlying surface. Boissonnat and Oudot [14,15]
have shown that when the point-wise sampling X is sufficiently dense and well-distributed, the restricted Delaunay
triangulation Del |Σ(X) is an accurate piecewise approximation of Σ, incorporating several theoretical guarantees of
fidelity. Given such behaviour, a Delaunay-refinement algorithm for surface mesh generation proceeds as before, with
an initial coarse restricted Delaunay triangulation, induced by a sparse sampling X ∈ Σ, incrementally refined via the
introduction of new Steiner vertices positioned on the surface Σ. This process is discussed in detail in Section 2.

Advancing-front techniques are an alternative approach to mesh generation, in which elements are created one-by-
one, starting from a set of frontal facets that are initialised on the boundary of the domain to be meshed. The mesh
is marched inwards layer-by-layer, with new elements created by carefully positioning vertices adjacent to the facets
in the frontal set. Following the placement of new elements, the set of frontal facets is updated to incorporate the
updated mesh topology. Elements are added incrementally in this fashion until a complete tessellation of the domain
is obtained. Such methods are applicable to surface meshing problems [4,5,6], although several non-trivial issues
of robustness are known to exist [6]. Fundamentally, advancing-front techniques are heuristic in nature, and do not
typically offer theoretical guarantees of convergence or bounds on element quality.

While the theoretical guarantees associated with Delaunay-refinement schemes make them a good choice for prac-
tical mesh generation, it is known that optimised advancing-front methods often produce meshes with superior element
quality characteristics in practice. Such considerations often lead to the adoption of frontal-type schemes in preference
to Delaunay-based approaches, despite issues of theoretical robustness. Such choices appear to be especially preva-
lent in the context of numerical modelling, including problems in fluid dynamics and/or structural analysis, where
improvements in mesh quality can significantly enhance the performance of the underlying numerical scheme.

2. Restricted Delaunay-refinement Techniques

Delaunay-refinement algorithms for surface meshing operate by incrementally adding new Steiner vertices to an
initially coarse restricted Delaunay triangulation of the underlying surface. Contrary to typical planar algorithms
[7,8,9], refinement schemes for surface meshing are designed not only to ensure that the resulting mesh satisfies
element shape and size constraints, but that the geometry and topology of the mesh itself is an accurate piecewise
approximation of the underlying surface.
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Fig. 1. Restricted tessellations for a curved domain in R2, showing (i) the curve Σ and enclosed area Ω, (ii) the Delaunay tessellation Del(X) and
Voronoi diagram Vor(X), and (iii) the restricted curve and area tessellations Del |Σ(X) and Del |Ω(X).

(i) (ii) (iii)

Before discussing the details of Delaunay-refinement algorithms for surface meshing problems, a number of im-
portant theoretical concepts are introduced:

Definition 2.1 (restricted Delaunay tessellation). Let Σ be a closed 2-manifold embedded in R3, enclosing a volume
Ω ⊂ R3. Let Del(X) be a full-dimensional Delaunay tessellation of a point-wise sample X ⊆ Σ and Vor(X) be the
Voronoi diagram associated with Del(X). The restricted Delaunay surface triangulation Del |Σ(X) is a sub-complex
of Del(X) including any 2-face f ∈ Del(X) associated with an edge v f ∈ Vor(X) such that v f

⋂
Σ , ∅. The restricted

Delaunay volume triangulation Del |Ω(X) is a sub-complex of Del(X) including any 3-simplex τ ∈ Del(X) associated
with an internal circumcentre c ∈ Ω.

It has been shown by a number of authors, including Cheng, Dey, Levine, Ramos and Ray [20,13,21] and Boisson-
nat and Oudot [14,15] that given a sufficiently dense point-wise sampling of the surface X ∈ Σ the restricted Delaunay
tessellation Del |Σ(X) is guaranteed to be both geometrically and topologically representative of the underlying sur-
face Σ. Specifically, it is known that, when the restricted tessellation is a so-called loose γ-sample [14,15], Del |Σ(X)
is homeomorphic to the surface Σ, the Hausdorff distance H(Del |Σ(X),Σ) is small and that Del |Σ(X) provides a good
piecewise approximation of the geometrical properties of Σ, including its normals, area and curvature. Similar theoret-
ical guarantees extend to the associated restricted volume tessellation Del |Ω(X). The properties of restricted Delaunay
tessellations are well documented in the literature, and a full account is not given here. The reader is referred to the
detailed expositions presented in [14,15] and [18] for further details and proofs.

Definition 2.2 (surface Delaunay ball). Let Del |Σ(X) be a restricted Delaunay triangulation of a 2-manifold Σ. Given
a simplex f ∈ Del |Σ(X), any circumball of f centred on the surface Σ is a surface Delaunay ball of f , denoted SDB( f ).

Surface Delaunay balls are centred at the intersection of the Voronoi diagram Vor(X) with the surface Σ. Specifi-
cally, each 2-face f ∈ Del |Σ(X) is associated with an orthogonal edge in the Voronoi diagram v f ∈ Vor(X), which is
guaranteed, by definition, to intersect with the surface Σ at least once. In some cases, especially when the sampling
X ∈ Σ is relatively coarse, there may be multiple surface balls associated with any given face f ∈ Del |Σ(X). In such
cases, it is typical to consider only the largest surface ball. See Figure 2 for an illustration of the surface Delaunay
ball for a general facet f .

Definition 2.3 (surface discretisation error). Let Del |Σ(X) be a restricted Delaunay surface triangulation of a 2-
manifold Σ. Given a simplex f ∈ Del |Σ(X), the surface discretisation error ε( f ) is the Euclidean distance between the
centres of the largest surface Delaunay ball of f and its diametric ball.

The surface discretisation error is a measure of how well the restricted triangulation Del |Σ(X) approximates the
underlying surface Σ geometrically. Considering a face f ∈ Del |Σ(X), the surface discretisation error ε( f ) is a measure
of the distance between the face f and the furthest associated point on the surface Σ. This measure can be thought
of as a one-sided discrete Hausdorff distance, ε( f ) = H(Del |Σ(X),Σ), defined from a set of representative points on
the triangulation Del |Σ(X) to the surface Σ. Clearly, if the triangulation Del |Σ(X) is a good piecewise representation
of the surface Σ, the surface discretisation error ε( f ) should be small. See Figure 2 for a description of the surface
discretisation error for a facet f ∈ Del |Σ(X).
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Fig. 2. The surface Delaunay ball for a restricted 2-face f ∈ Del |Σ(X), showing (i) placement of the surface ball at the intersection of the dual edge
v f ∈ Vor(X) and the surface Σ, and (ii) associated radius r( f ) and surface discretisation error ε( f ).

(i) (ii)

Definition 2.4 (radius-edge ratio). The radius-edge ratio ρ(τ) for a d-simplex τ is R/‖emin‖, where R is the radius of the
diametric ball of τ and ‖emin‖ is the length of its shortest edge.

The radius-edge ratio is a measure of element shape-quality, and achieves a minimum for equilateral elements,
such that ρ(τ) = 1/

√
3, increasing toward +∞ as elements tend toward degeneracy. For 2-simplexes, the radius-edge

ratio is robust and can be related to the minimum plane angle θmin, such that ρ(τ) = 1
2 (sin(θmin))−1 . Due to the

summation of angles in a triangle, given a minimum angle θmin the largest angle θmax is clearly bounded, such that
θmax ≤ 180◦ − 2θmin.

Definition 2.5 (area-length ratio). The area-length ratio a(τ) for a d-simplex τ is A/‖erms‖
d, where A is the signed area

of τ and ‖erms‖ is the root-mean-square of its edge lengths.

The area-length ratio is a robust measure of element shape-quality, and is typically normalised to achieve a score of
+1 for ideal elements. As an element is distorted toward degeneracy a(τ)→ 0, with fully inverted elements achieving
a score of −1. In contrast to the radius-edge ratio, higher-dimensional generalisations of the area-length metrics are
known to be robust to all element configurations, and, as a consequence, the area-length measure is widely used as
a shape-quality metric in a variety of meshing applications. The area-length measure is used throughout the current
study to catalogue the shape-quality of the various surface triangulations.

2.1. An Existing Algorithm

The development of provably-good Delaunay-refinement schemes for surface-based mesh generation is an ongoing
area of research. An algorithm for the meshing of closed 2-manifolds embedded in R3 is presented, adapted largely
from the methods presented by Boissonnat and Oudot in [14,15]. This method is largely equivalent to the Cgalmesh
algorithm, available as part of the Cgal package, and summarised by Jamin, Alliez, Yvinec and Boissonnat in [16].
A similar algorithm is also outlined by Cheng, Dey and Shewchuk in [18]. The algorithm presented in this section
is referred to as the ‘conventional’ Delaunay-refinement approach, due to its direct use of circumcentre-based Steiner
vertices.

In this study, attention is restricted to the development of so-called remeshing operations, in which the underlying
surface Σ is specified as an existing manifold triangular complex P. While this constraint may seem overly restrictive,
it is important to recognise that the use of such triangulated surface representations is widespread within the com-
putational modelling communities, associated with applications such as laser scanning, terrain modelling and some
computer drawing applications. Furthermore, remeshing operations are a necessary task in many practical cases, with
triangulated surface models often incorporating a number of undesirable defects, including elements of low shape
quality and/or regions of unsuitable resolution. The remeshing algorithms presented in this study are designed to
remedy these situations, generating new high-quality surface meshes that adhere to user defined sizing constraints.
Additionally, the algorithms presented in this study require that the underlying surfaces are sufficiently smooth, with-
out sharp ridges or corners. Extensions to more general classes of surfaces, including parametric and/or implicit
representations and those including sharp features and constraints, is left for future investigation.

Following the approach described by Jamin et al. in [16], the Delaunay-refinement algorithm takes as input a
surface domain, described by a closed 2-manifold Σ, an upper bound on the allowable element radius-edge ratio
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Algorithm 2.1 Restricted Surface Delaunay-refinement
1: function DelaunaySurface(Σ,Ω, ρ̄, ε̄, h(x),T |Σ,T |Ω)
2: Form an initial sampling X ∈ Σ such that X is

well-distributed on Σ.
3: Form Delaunay tessellation Del(X).
4: Form restricted objects Del |Σ(X) and Del |Ω(X).
5: Enqueue all restricted 2-simplexes Q|Σ ← f ∈

Del |Σ(X). A 2-simplex f is enqueued if Bad-
Simplex( f ) returns true.

6: while (Q|Σ , ∅) do . {main refinement sweeps}
7: Call RefineSimplex( f ← Q|Σ)
8: Update the restricted Delaunay tessella-

tions Del |Σ(X) and Del |Ω(X).
9: Update Q|Σ to reflect changes to Del |Σ(X).

10: end while
11: return T |Σ = Del |Σ(X) and T |Ω = Del |Ω(X)
12: end function

1: function RefineSimplex( f ) . {surface refinement}
2: Call SurfaceDelaunayBall( f ,B(c, r)max).
3: Form new Steiner vertex p about B(c, r)max.
4: Insert Steiner vertex X ← p, update Del(X)← X.
5: end function
1: function SurfaceDelaunayBall( f ) . {surface ball}
2: Form Voronoi edge v f orthogonal to 2-simplex f .
3: Form the set of associated surface Delaunay

balls B(c, r)i for the restricted 2-simplex f ∈
Del |Σ(X). Balls are centred about the set of
surface intersections v f

⋂
Σ , ∅.

4: return B(c, r)max, where rmax is maximal.
5: end function
1: function BadSimplex( f ) . {termination criteria}
2: return ρ( f ) > ρ̄ or ε( f ) > ε̄ or h( f ) > h (x f )
3: end function

ρ̄, a mesh size function h(x) defined at all points on the surface Σ and an upper bound on the allowable surface
discretisation error ε̄. The input surface Σ encloses a bounded volume Ω. The algorithm returns a triangulation T |Σ
of the surface Σ, where T |Σ is a restricted Delaunay surface triangulation of a point-wise sampling X ∈ Σ, such that
T |Σ = Del |Σ(X). As a by-product, the algorithm also returns a coarse triangulation T |Ω of the enclosed volume Ω,
where T |Ω is a restricted Delaunay volume triangulation T |Ω = Del |Ω(X). Both Del |Σ(X) and Del |Ω(X) are sub-
complexes of the full-dimensional Delaunay tessellation Del(X). Note that Del |Σ(X) is a triangular complex, while
Del |Ω(X) and Del(X) are tetrahedral complexes. The method is summarised in Algorithm 2.1.

The Delaunay-refinement algorithm guarantees, firstly, that all elements in the output surface triangulation f ∈ T |Σ
satisfy element shape constraints, ρ( f ) ≤ ρ̄, element size constraints h( f ) ≤ h (x f ) and surface discretisation bounds
ε( f ) ≤ ε̄. Furthermore, for sufficiently small mesh size functions h(x), the surface triangulation T |Σ is guaranteed to be
a good piecewise approximation of the underlying surface Σ, exhibiting both geometrical and topological convergence
as h(x)→ 0, consistent with the characteristics of restricted Delaunay tessellations outlined in Definition 2.1.

The Delaunay-refinement algorithm begins by creating an initial point-wise sampling of the surface X ∈ Σ. Ex-
ploiting the discrete representation available for Σ, the initial sampling is obtained as a well-distributed subset of
the existing vertices Y ∈ P, where P is the polyhedral representation of the surface Σ. In the next step, the initial
triangulation objects are formed. In this study, the full-dimensional Delaunay tessellation, Del(X), is built using an
incremental Delaunay triangulation algorithm, based on the Bowyer-Watson technique [22]. The restricted surface
and volumetric triangulations, Del |Σ(X) and Del |Ω(X), are derived from Del(X) by explicitly testing for intersections
between the associated Voronoi diagram Vor(X) and the surface Σ. These queries are computed efficiently by storing
the surface definition P in an aabb-tree [23]. The main loop of the algorithm proceeds to incrementally refine any
2-faces f ∈ Del |Σ(X) that violate either the radius-edge, element size or surface discretisation requirements. The
refinement process is priority scheduled, with triangles f ∈ Del |Σ(X) ordered according to their radius-edge ratios
ρ( f ), ensuring that the element with the worst ratio is refined at each iteration. Individual elements are refined based
on their surface Delaunay balls, with a triangle f ∈ Del(X) eliminated by inserting the centre of the largest ball
B(c, r)max = SDB( f ) into the tessellation Del(X). This process is a direct generalisation of the circumcentre-based
insertion method associated with Ruppert’s algorithm for planar domains [8,9]. As a consequence of changes to the
full-dimensional tessellation following the insertion of a new Steiner vertex, corresponding updates to the restricted
triangulations Del |Σ(X) and Del |Ω(X) are instigated, ensuring that all tessellation objects remain valid throughout
the refinement process. The Delaunay-refinement algorithm terminates when all 2-faces f ∈ Del |Σ(X) satisfy all
radius-edge, size and surface discretisation thresholds, such that1 ρ( f ) ≤ ρ̄, h( f ) ≤ αh (x f ) and ε( f ) ≤ ε̄, respectively,
where the element size h( f ) is proportional is the radius of the associated surface ball B(c, r)max = SDB( f ), such that2

h( f ) =
√

3 r, and the target size h (x f ) is sampled at the centre of the surface ball c.

1 The coefficient α = 4/3, to ensure that the mean element size does not, on average, undershoot the desired target size h (x f ).
2 The coefficient

√
3 represents the mapping between the edge length and diametric ball radius for an equilateral element. Such scaling ensures

that size constraints are applied with respect to mean edge length.
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3. Restricted Frontal-Delaunay Methods

Frontal-Delaunay algorithms are a hybridisation of advancing-front and Delaunay-refinement techniques, in which
a Delaunay triangulation is used to define the topology of a mesh while new Steiner vertices are inserted in a manner
consistent with advancing-front methodologies. In practice, such techniques have been observed to produce very
high-quality meshes, inheriting the smooth, semi-structured vertex placement of pure advancing-front methods and
the optimal mesh topology of Delaunay-based approaches. While Frontal-Delaunay methods have previously been
used by a range of authors in the context of planar, volumetric and parametric surface meshing, including, for example
studies by Üngör and Erten [24], Rebay [25], Mavriplis [26], Frey, Borouchaki and George [27], and Remacle,
Henrotte, Carrier-Baudouin, Béchet, Marchandise, Geuzaine and Mouton [28], the authors are not aware of any
previous investigations describing the application of such techniques to the surface meshing problem directly. The
conventional advancing-front method, on the other hand, has been generalised to support surface meshing, as, for
example, outlined in studies by Rypl [29,5] and Schreiner, Scheidegger, Fleishman and Silva [6,30].

In these previous studies, the conventional planar advancing-front methodology is directly extended to support
surface operations. Meshing proceeds with the incremental introduction of a well distributed set of vertices X posi-
tioned on the surface X ∈ Σ. It should be noted that, contrary to the restricted Delaunay techniques introduced in
previous sections, advancing-front methods typically maintain a partial manifold triangular complex T |Σ only – they
do not construct a full-dimensional tessellation T |Ω. It should also be noted that, in addition to the usual limitations
associated with advancing-front strategies, serious issues of robustness often afflict these techniques in practice due to
the difficulties associated with the reliable evaluation of the requisite geometric intersection and overlap predicates for
sets of non-planar elements. Additionally, for highly curved and/or poorly separated surface definitions it is known to
be difficult to ensure the topological correctness of the output mesh T |Σ. Schreiner et al. [6,30] introduce a number of
heuristic techniques in an effort to overcome these difficulties.

3.1. Off-centres

The new Frontal-Delaunay algorithm presented in this study is primarily based on ideas introduced by Rebay,
who, in [25], developed a planar Frontal-Delaunay algorithm in which new vertices are positioned along edges of
the associated Voronoi diagram. Rebay showed that new vertices can be positioned on Vor(X) according to an a
priori mesh size function h(x), a strategy broadly consistent with conventional advancing-front techniques. While
his algorithm maintains a Delaunay triangulation T = Del(X) of the current vertex set X, it is still fundamentally an
advancing-front scheme – bereft of guarantees on the element shape quality ρ(τ). Rebay reported that his scheme
produced high-quality output, typically outperforming conventional Delaunay-refinement in practice.

Üngör and Erten have approached the problem from the flip-side, introducing the notion of generalised Steiner
vertices for planar Delaunay-refinement methods. Their ‘off-centre’ vertices are points lying along edges in the
associated Voronoi diagram, as per Rebay. In [31], Üngor showed that when refining a triangle τ, its off-centre should
be positioned, if possible, such that the new triangle σ adjacent to the shortest edge in τ satisfies the shape-quality
constraint ρ(σ) ≤ ρ̄. Importantly, Üngör demonstrated that such a strategy typically leads to an improvement in the
performance of Delaunay-refinement in practice, reducing the size of the output |T |. Üngör extended the guarantees
derived for Ruppert’s Delaunay-refinement algorithm to his off-centre technique and showed that such bounds are
typically improved upon in practice. Off-centre refinement is based on Ruppert’s Delaunay-refinement framework
directly, involving modifications to the procedure used to refine low-quality triangles only.

In this study, a generalisation of the ideas introduced by Rebay and Üngör is formulated for the surface meshing
case – using off-centre Steiner vertices to simulate the vertex placement strategy of a conventional advancing-front
approach, while also preserving the framework of a Delaunay-refinement technique. The aim of such a strategy is
to recover the high element qualities and smooth, semi-structured point-placement generated by frontal methods,
while inheriting the theoretical guarantees of Delaunay-refinement methods. Advancing-front algorithms typically
incorporate a mesh size function h(x), a function f : R3 → R+ defined over the domain to be meshed, where
h(x) represents the desired edge length ‖e‖ at any point x ∈ Σ. This mesh size function typically incorporates size
constraints dictated by the both the user and the geometry of the domain to be meshed. The construction of appropriate
mesh size functions will be discussed in subsequent sections, but for now, it suffices to note that h(x) is a g-Lipschitz
function defined at all points on Σ.
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Fig. 3. Placement of an off-centre vertex, showing (i) the surface ball associated with a facet f ∈ Del |Σ(X), (ii) the planeV aligned with the local
facet of Vor(X) associated with the short edge emin ∈ f , (iii) placement of the size-optimal point c′′ to satisfy the size constraints h(mi) and h(m j).

(i) (ii) (iii)

The proposed Frontal-Delaunay algorithm developed in this study is an extension of the restricted Delaunay-
refinement algorithm presented in Section 2, modified to use off-centre rather than circumcentre-based refinement
strategies. The basic framework is consistent with the Delaunay-refinement algorithm described previously, in which
an initially coarse restricted Delaunay triangulation of a surface Σ is refined through the introduction of additional
Steiner vertices X ∈ Σ until all constraints are satisfied. A restricted surface triangulation T |Σ = Del |Σ(X) is con-
structed as a sub-complex of the full-dimensional tessellation Del(X) and a coarse restricted volumetric tessellation
T |Ω = Del |Ω(X) is also available as a by-product. The constraints satisfied by the Frontal-Delaunay algorithm are
identical to those incorporated in the restricted Delaunay-refinement scheme, with upper bounds on the radius-edge
ratio ρ̄, surface discretisation error ε̄ and element size h (x f ) all required to be satisfied for convergence. See Algo-
rithm 2.1 for a detailed outline of the method.

3.2. Point-placement Strategy

Given a surface facet f ∈ Del |Σ(X) marked for refinement, the new Steiner vertex introduced to eliminate f is
an off-centre, constructed based on local size and shape constraints. Adopting the generalised off-centre framework
introduced by Üngör, the ‘ideal’ location of the off-centre c for the given element f is based on a consideration
of the isosceles triangle σ formed about the short edge emin ∈ f . The placement of a new point c′′ is considered,
designed to ensure that σ satisfies local size constraints. The final off-centre c is a modification of c′′, such that there
is a reduction to the standard circumcentre-based scheme in limiting cases. The off-centres introduced in this study
involve the placement of two distinct kinds of Steiner vertices. Type I vertices are equivalent to conventional element
circumcentres, and are used to satisfy local element shape constraints. Type II vertices are the size-optimal points c′′,
designed to satisfy local sizing constraints.

Considering the placement of a Type II Steiner vertex for a 2-simplex f ∈ Del |Σ(X), the size-optimal point c′′ is
positioned at an intersection of the surface Σ and a plane V, where V is aligned with the local facet of the Voronoi
diagram Vor(X) associated with the short edge emin ∈ f . The plane is positioned such that it passes through three local
points on Vor(X): the midpoint of the short edge emin ∈ f , the centre of the diametric ball of f and the centre of the
surface Delaunay ball B(c, r)max = SDB( f ). The vertex c′′ is positioned such that the size of the new triangle h(σ)
satisfies local constraints. Specifically, the altitude of the triangle is calculated to ensure that the two new edges of σ
are not too long, such that ‖e1‖ ' h(m1) and ‖e2‖ ' h(m2), where the mi’s are the edge midpoints. Each constraint
is solved for an associated altitude ai

′′ = (h(mi)2 − ‖ 1
2 emin‖

2) 1
2 . The diametric ball of the edge emin is required to be

empty, imposing a limit on the corresponding altitudes, such that ā′′i = max (ai
′′, ‖ 1

2 emin‖). This condition ensures that
c′′ is always sufficiently far from emin, even when the local size function h(x) is much smaller than ‖emin‖. Given the
altitudes, the position of the size-optimal point c′′ is calculated by computing the intersection of the surface Σ with a
circle of radius min (ā′′1 , ā

′′
2 ), centred at the midpoint of the short edge emin ∈ f and inscribed on the plane V. In the

case of multiple intersections, the candidate point c′′i of closest alignment to the frontal direction vector d f is selected.
Specifically, the point c′′i that maximises the scalar product (c′′i − xmid) · d f is chosen, where xmid is the midpoint of
the short edge emin ∈ f and the frontal direction vector d f is taken from the midpoint xmid to the centre of the surface
ball B(c, r)max = SDB( f ).
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Note that, for non-uniform h(x), the expressions for the point c′′ are non-linear, with the altitudes ai
′′ depending

on the evaluation of the mesh size function at the edge midpoints h(mi) and visa-versa. In practice, since h(x) is guar-
anteed to be Lipschitz smooth, a simple iterative predictor-corrector procedure is sufficient to solve these expressions
approximately. The positioning of size-optimal Type II Steiner vertices is illustrated in Figure 3.

Given the point c′′, the position of the final off-centre c for the 2-simplex f is determined. The point c is selected
according to a worst-case argument, setting c = c′′ if c′′ lies no further from xmid than the centre of the surface
Delaunay ball B(c, r)max = SDB( f ). The off-centre is simply set to the centre cmax otherwise. This procedure ensures
that the new point placement strategy reduces to a ‘conventional’ circumcentre-based scheme in limiting cases, with
cmax equivalent to the standard Type I Steiner vertices used in the restricted Delaunay-refinement algorithm presented
in Section 2.

3.3. Discussion

While the new point-placement strategy offers increased geometric flexibility when positioning Steiner vertices
compared to conventional circumcentre-based refinement schemes, it is still similarly derived by considering funda-
mental properties associated with the underlying Voronoi diagram. Importantly, by constraining Steiner vertices to the
facets of Vor(X) it is ensured that the distribution of mesh vertices remains well-separated throughout the refinement
process. For the sake of brevity, a full proof of termination or correctness for the new method is not included here, but
it is important to note that constraints on element radius-edge ratios ρ( f ), element size h (x f ) and surface discretisation
error ε( f ) are satisfied by definition, provided that termination is achieved in practice. The development of a suitable
theoretical model for the new Frontal-Delaunay algorithm is the subject of a forthcoming publication [32].

4. Mesh Size Functions

The construction of high-quality mesh size functions is an important aspect of both the restricted Delaunay-
refinement and Frontal-Delaunay algorithms presented in Sections 2 and 3. A good mesh size function h(x) incorpo-
rates sizing constraints imposed by both the user and the geometry of the domain to be meshed. These contributions
can be considered via two separate size functions, where hu(x) represents user-defined sizing information and hg(x)
encapsulates geometry driven constraints. In this study, it is required that both hu(x) and hg(x) be piecewise linear
functions defined on a supporting tetrahedral complex S. Construction of appropriate user-defined functions hu(x) is
highly problem dependent and detailed formulations are not considered here.

Based on the work of Boissonnat and Oudot [14,15], it is known that the geometric mesh size function hg(x) must
be sufficiently small relative to the local-feature-size, denoted lfs(x), induced by the bounding surface Σ to ensure that
the resulting surface triangulation Del |Σ(X) is both topologically and geometrically correct. Specifically, to guarantee
that the resulting tessellation is a so-called loose γ-sample, it is required that hg(x) ≤ 0.08 lfs(x), where lfs(x) is the
distance to the medial-axis of the bounded domain Ω. In practice, such constraints are typically found to be overly
restrictive [18], allowing for a relaxation of the coefficient γ = 0.08. The local-feature-size can be expressed as the
distance from any point xi ∈ Σ to the closest point on the medial-axis of the domain. Given that Σ is represented as an
underlying triangulation P in this work, a discrete approximation to lfs(x) can be calculated directly via the method of
Amenta and Bern [33,34,35]. For the sake of brevity, we do not describe these methods in full here, but simply note
that they provide an efficient means to estimate lfs(x) at the vertices of the supporting complex S.

Given an estimate of lfs(x) on the boundary of S, it is possible to exact a degree of user-defined control on the
resulting size function via a Lipschitz smoothing process. Following the work of Persson [36], a gradient-limited
function h̃(x) can be constructed by limiting the variation in h(x) over the elements of S. In this study, a scalar
smoothing parameter g ∈ R+ is used to globally, and isotropically limit variation, such that h̃(xi) ≤ h̃(x j) + g ‖xi − x j‖

for all vertex pairs xi, x j ∈ S. The gradient-limited size function h̃(x) becomes more uniform as g→ 0.

5. Results & Discussions

The performance of the Delaunay-refinement and Frontal-Delaunay surface meshing algorithms presented in Sec-
tions 2 and 3 was investigated experimentally, with both techniques used to mesh a series of benchmark problems.
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Both the Frontal-Delaunay and Delaunay-refinement algorithms were implemented, allowing the performance and
output of the two algorithms to be compared side-by-side. Due to similarities in the overall structure, a common
code-base was used, with the algorithms differing only in the type of Steiner vertices inserted, as per the discussions
outlined in Section 3. Both algorithms were implemented in C++ and compiled as 64-bit executables.

The Delaunay-refinement and Frontal-Delaunay algorithms were used to mesh a series of five benchmark problems,
including three test-cases presented in Figure 4 in which uniform size constraints h(x) = α were specified, and two
detailed comparative studies presented in Figures 5 and 6 designed to assess the impact of graded size constraints.
The maximum radius-edge ratio was held constant across all benchmark problems, such that θmin ' 29◦. Additionally,
a non-uniform surface discretisation threshold was enforced, setting ε̄ = βh(x), with β = 1/10. For all test problems,
detailed statistics on element quality are presented, including histograms of element area-length a( f ), plane-angle3

θ( f ) and relative-length4 ‖e‖ (h(xe))−1 distributions. Histograms further highlight the minimum and mean area-length
quality metrics, the worst-case plane angle bounds, θmin and θmax and the mean relative edge-length. Both algorithms
successfully meshed the full set of benchmark problems, demonstrating that the new Frontal-Delaunay algorithm is
capable of generating high quality surface triangulations, satisfying constraints on element shape-quality ρ( f ), element
size h (x f ) and surface discretisation error ε( f ), consistent with a conventional Delaunay-refinement technique.

Results for the uniform meshing test-cases are presented in Figure 4, where a small constant mesh size was im-
posed globally, setting h(x) = α, where α was chosen to be 3% of the maximum bounding-box dimension associated
with each model. Analysis of these results show that both the Frontal-Delaunay and Delaunay-refinement algorithms
generate high-quality surface meshes for all test cases – satisfying the required element shape-quality, size and surface
error thresholds. Focusing on the distribution of element shape-quality explicitly, it is clear that the Frontal-Delaunay
algorithm achieves significantly better results, producing meshes with higher mean area-length ratios in all cases. Ad-
ditionally, the distribution of θ( f ) shows much tighter clustering about 60◦, again implying significant improvements
in mean element shape. Analysis of the relative-length distribution shows that meshes generated using the Frontal-
Delaunay algorithm tightly conform to the imposed mesh size constraints, with a tight clustering of ‖e‖ (h(xe))−1 about
1. In contrast, output generated using the Delaunay-refinement scheme is seen to incorporate significant sizing ‘er-
ror’, typified by broad distributions of relative-length, straddling ‖e‖ (h(xe))−1 ' 1. A detailed visual inspection of the
results presented in Figure 4 show a marked increase in both the uniformity and sub-structure in the output associated
with the Frontal-Delaunay approach.

A sequence of meshes for the bunny and venus problems are presented in Figures 5 and 6, examining the impact
of graded size constraints on algorithm performance. A set of meshes were generated for both test cases using low,
medium and high resolution settings, where the associated mesh size functions h(x) were built using increasingly
stringent gradient limits, such that gi ∈ {3/10, 2/10, 1/10} respectively. Analysis of Figures 5 and 6 show that both the
Frontal-Delaunay and Delaunay-refinement algorithms generate high-quality meshes for all test cases – satisfying the
required element quality, size and surface error thresholds. Analysis of the distributions of a( f ) and θ( f ) again show
that the Frontal-Delaunay algorithm consistently outperforms the Delaunay-refinement scheme, generating meshes
with higher mean area-length ratios in all cases. Furthermore, it is evident that the quality of meshes generated using
the Frontal-Delaunay algorithm improves as h(x)→ 0, as indicated by the increase in mean a( f ) and the narrowing of
the θ( f ) distribution about 60.0◦. In contrast, similar analysis shows that output generated via the Delaunay-refinement
technique is essentially independent of sizing constraints, with distributions of a( f ) and θ( f ) showing little variation
with h(x). Visually, the enhanced quality of the meshes generated using the Frontal-Delaunay algorithm is again
evident, with all test cases showing a marked increase in both smoothness and sub-structure. Given the tight bounds
on radius-edge ratios in these tests, the Delaunay-refinement algorithm appears to achieve a maximum mean area-
length ratio a( f ) ' 0.92. The Frontal-Delaunay algorithm is seen to generate consistently better output, with mean
area-length metrics reaching a( f ) ' 0.96 at high resolution settings.

Consistent with previous results, analysis of the distribution of relative-length ratios show that the Frontal-Delaunay
algorithm tightly conforms to the imposed non-uniform sizing constraints, with ‖e‖ (h(xe))−1 tightly clustered about
1. Furthermore, like the element shape-quality results discussed previously, it can be seen that the distribution of

3 The plane-angle distribution θ( f ) includes the three angles associated with each surface facet f ∈ Del |Σ(X).
4 The relative-length distribution ‖e‖ (h(xe))−1 is a measure of size-function conformance, expressing the ratio of actual-to-desired edge length

for all edges e ∈ Del |Σ(X), where the mesh size function h(xe) is sampled at the edge midpoints xe.
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Fig. 4. Triangulations for the ellipsoid, woodthinker and femur problems, showing output for the Frontal-Delaunay (upper) and Delaunay-
refinement (lower) algorithms. A uniform mesh size function h(x) = α is imposed, where α ∈ R+. Element shape-quality is constrained such that
θmin ≥ 29◦. The surface discretisation threshold is scaled to the local sizing constraints, such that ε̄ = (1/10) h(x). Element counts |T |Σ | are included
for each case. Normalised histograms of element area-length ratio a( f ), plane-angle θ( f ) and relative-length ‖e‖ (h(xe))−1 are illustrated.
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relative-length improves as h(x) → 0, as indicated by the narrowing of the distribution about ‖e‖ (h(xe))−1 = 1. In
contrast, the Delaunay-refinement scheme is again shown to be associated with significant sizing error, as illustrated
by broad distributions of relative-length straddling ‖e‖ (h(xe))−1 ' 1. Such behaviour appears to be largely independent
of the characteristics of the imposed mesh size constraints.

6. Conclusions

A new Frontal-Delaunay algorithm has been presented, designed to triangulate closed 2-manifold domains embed-
ded in R3. The new algorithm is based on the so-called restricted Delaunay triangulation, in which a surface mesh
Del |Σ(X), conforming to an underlying surface Σ, is constructed as a subset of a full-dimensional Delaunay tessella-
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Fig. 5. Size-driven meshing for the bunny problem, showing output for the Frontal-Delaunay (upper) and Delaunay-refinement (lower) algorithms.
Mesh size functions are built with increasingly stringent gradient limits, gi ∈ {3/10, 2/10, 1/10} from left to right. Element shape-quality is constrained
such that θmin ≥ 29◦. The surface discretisation threshold is scaled to the local sizing constraints, such that ε̄ = (1/10) h(x). Element counts |T |Σ | are
included for each case. Normalised histograms of element area-length ratio a( f ), plane-angle θ( f ) and relative-length ‖e‖ (h(xe))−1 are illustrated.

|T |Σ | = 12, 516 |T |Σ | = 15, 026 |T |Σ | = 25, 006

0.59 0.94

0 0.2 0.4 0.6 0.8 1

29.02 121.09

0 30 60 90 120 150 180

0.97

0 0.5 1 1.5 2

0.59 0.95

0 0.2 0.4 0.6 0.8 1

29.02 121.18

0 30 60 90 120 150 180

0.98

0 0.5 1 1.5 2

0.62 0.96

0 0.2 0.4 0.6 0.8 1

29.00 118.14

0 30 60 90 120 150 180

0.99

0 0.5 1 1.5 2

|T |Σ | = 12, 708 |T |Σ | = 14, 408 |T |Σ | = 25, 490

0.59 0.91

0 0.2 0.4 0.6 0.8 1

29.02 121.37

0 30 60 90 120 150 180

0.98

0 0.5 1 1.5 2

0.58 0.92

0 0.2 0.4 0.6 0.8 1

29.01 121.82

0 30 60 90 120 150 180

0.99

0 0.5 1 1.5 2

0.60 0.92

0 0.2 0.4 0.6 0.8 1

29.02 119.90

0 30 60 90 120 150 180

1.02

0 0.5 1 1.5 2

tion Del(X). The new restricted Frontal-Delaunay algorithm is based on a generalisation of the work of Rebay [25]
and Üngör [31] for planar problems, in which generalised Steiner vertices are inserted along edges in the Voronoi
diagram. This work has been extended to support surface meshing operations through the development of a new
point-placement strategy that positions vertices on facets in the underlying Voronoi complex. This new scheme allows
for the insertion of both size- and shape-optimal Steiner vertices, leading to a hybrid approach that combines many
of the advantages of conventional advancing-front and Delaunay-refinement techniques. A series of comparative ex-
perimental studies confirm the effectiveness of this new approach in practice, demonstrating that an improvement in
element quality and a reduction in output size is typically achieved, compared to an existing Delaunay-refinement
scheme. Importantly, it has also been demonstrated that the new Frontal-Delaunay algorithm satisfies the same set of
constraints as conventional Delaunay-refinement approaches, adhering to limits on element radius-edge ratios, edge
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Fig. 6. Size-driven meshing for the venus problem, showing output for the Frontal-Delaunay (upper) and Delaunay-refinement (lower) algorithms.
Mesh size functions are built with increasingly stringent gradient limits, gi ∈ {3/10, 2/10, 1/10} from left to right. Element shape-quality is constrained
such that θmin ≥ 29◦. The surface discretisation threshold is scaled to the local sizing constraints, such that ε̄ = (1/10) h(x). Element counts |T |Σ | are
included for each case. Normalised histograms of element area-length ratio a( f ), plane-angle θ( f ) and relative-length ‖e‖ (h(xe))−1 are illustrated.
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length and surface discretisation error. Results show that the new algorithm is an effective hybridisation of existing
mesh generation techniques, combining the high element quality and mesh sub-structure of advancing-front tech-
niques with the theoretical guarantees of Delaunay-refinement schemes. It is expected that applications requiring high
mesh quality, including problems in computational fluid dynamics and/or structural analysis, may benefit from the
new Frontal-Delaunay technique. Future work should incorporate support for an extended class of surface definitions,
including domains containing sharp features.
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